Answer :
Answer:
[tex]v = 4.44 \times 10^5 m/s[/tex]
Explanation:
By Einstein's Equation of photoelectric effect we know that
[tex]h\nu = W + \frac{1}{2}mv^2[/tex]
here we know that
[tex]h\nu[/tex] = energy of the photons incident on the metal
[tex]W [/tex] = minimum energy required to remove photons from metal
[tex]\frac{1}{2}mv^2[/tex] = kinetic energy of the electrons ejected out of the plate
now we know that it requires 351 nm wavelength of photons to just eject out the electrons
so we can say
[tex]W = \frac{hc}{351 nm}[/tex]
here we know that
[tex]hc = 1242 eV-nm[/tex]
now we have
[tex]W = \frac{1242}{351} = 3.54 eV[/tex]
now by energy equation above when photon of 303 nm incident on the surface
[tex]\frac{1242 eV-nm}{303 nm} = 3.54 eV + \frac{1}{2}(9.1 \times 10^{-31})v^2[/tex]
[tex]4.1 eV = 3.54 eV + (4.55 \times 10^{-31}) v^2[/tex]
[tex](4.1 - 3.54)\times 1.6 \times 10^{-19}) = (4.55 \times 10^{-31}) v^2[/tex]
[tex]8.96 \times 10^{-20} = (4.55 \times 10^{-31}) v^2[/tex]
[tex]v = 4.44 \times 10^5 m/s[/tex]