Answer :

frika

Here you have two polynomials:

1. The dividend - [tex] f(x)=2x^4 - 3x^3 - 3x^2 + 7x - 3 [/tex]

2. The divisor - [tex] g(x)=x^2 - 2x + 1 [/tex].

Since divisor is perfect square [tex] g(x)=x^2 - 2x + 1=(x-1)^2 [/tex], you should check what is the quotient after division f(x) by (x-1):

[tex] f(x)=2x^4 - 3x^3 - 3x^2 + 7x - 3=(x-1)(2x^3-x^2-4x+3)=(x-1)(x-1)(2x^2+x-3)=(x-1)^2(2x^2+x-3)=g(x)(2x^2+x-3). [/tex]

Then the quotient is [tex] 2x^2+x-3 [/tex].

isyllus

Answer:

Quotient: [tex]2x^2+x-3[/tex]

Please see the attachment.

Step-by-step explanation:

Given: [tex](2x^4-3x^3-3x^2+7x-3)\div (x^2-2x+1)[/tex]

We are given rational expression and need to find quotient.

Using long division method to find the quotient.

First we get rid of [tex]2x^4[/tex] by [tex]x^2[/tex]

[tex]x^2-2x+1[/tex] ) [tex]2x^4-3x^3-3x^2+7x-3[/tex] ( [tex]2x^2+x-3[/tex]

                 [tex] -2x^4+4x^3-2x^2[/tex]

                              [tex]x^3-5x^2+7x[/tex]

                               [tex]-x^3+2x^2-x[/tex]

                                      [tex]-3x^2+6x-3[/tex]

                                      [tex] 3x^2-6x+3[/tex]

                                              [tex]0[/tex]

Hence, The quotient of division is [tex]2x^2+x-3[/tex]

${teks-lihat-gambar} isyllus

Other Questions