Answered

What is the average kinetic energy of helium atoms in a region of the solar corona where the temperature is 5.90 x 10^5 K?

Answer :

Answer: The average kinetic energy of helium atoms is [tex]1.222\times 10^{-17}J[/tex]

Explanation:

To calculate the average kinetic energy of the atom, we use the equation:

[tex]K=\frac{3}{2}kT[/tex]

where,

K = average kinetic energy = ?

k = Boltzmann constant = [tex]1.3807\times 10^{-23}J/K[/tex]

T = temperature = [tex]5.9\times 10^5K[/tex]

Putting values in above equation, we get:

[tex]K=\frac{3}{2}\times 1.3807\times 10^{-23}J/K\times 5.9\times 10^5K\\\\K=1.222\times 10^{-17}J[/tex]

Hence, the average kinetic energy of helium atoms is [tex]1.222\times 10^{-17}J[/tex]

Other Questions