Answer :

ayip4315

Answer:

45 degrees

Step-by-step explanation:

Convert both tan and cot to sin and cos:

Let theta = x (because I can't put theta here)

[tex]tan^{2} x + cot^{2}x = 2\\\frac{sin^{2} }{cos^{2} } + \frac{cos^{2} }{sin^{2} } =2\\\frac{sin^{4}x + cos^{4}x }{cos^{2}xsin^{2}x  }  =2 \\sin^{4}x + cos^{4}x = 2cos^{2}xsin^{2}x\\sin^{4}x + cos^{4}x - 2cos^{2}xsin^{2}x =0 \\sin^{4}x  - 2cos^{2}xsin^{2}x + cos^{4}x = 0\\(sin^{2}x - cos^{2}x)^{2}  =0\\sin^{2}x - cos^{2}x =0\\sin^{2}x = cos^{2}x \\\frac{sin^{2}x}{cos^{2}x}  = 1\\tan^{2}x = 1\\x = 45 degrees[/tex]

Good evening ,

___________________

Step-by-step explanation:

Look at the photo below for the detailed answer.

:)

${teks-lihat-gambar} profarouk

Other Questions