solve the equation: tan^2x+cot^2x=2

Answer:
45 degrees
Step-by-step explanation:
Convert both tan and cot to sin and cos:
Let theta = x (because I can't put theta here)
[tex]tan^{2} x + cot^{2}x = 2\\\frac{sin^{2} }{cos^{2} } + \frac{cos^{2} }{sin^{2} } =2\\\frac{sin^{4}x + cos^{4}x }{cos^{2}xsin^{2}x } =2 \\sin^{4}x + cos^{4}x = 2cos^{2}xsin^{2}x\\sin^{4}x + cos^{4}x - 2cos^{2}xsin^{2}x =0 \\sin^{4}x - 2cos^{2}xsin^{2}x + cos^{4}x = 0\\(sin^{2}x - cos^{2}x)^{2} =0\\sin^{2}x - cos^{2}x =0\\sin^{2}x = cos^{2}x \\\frac{sin^{2}x}{cos^{2}x} = 1\\tan^{2}x = 1\\x = 45 degrees[/tex]
Good evening ,
___________________
Step-by-step explanation:
Look at the photo below for the detailed answer.
:)