Answer :

calculista

Answer:

Part 1) [tex]x=8\sqrt{2}\ units[/tex]

Part 2) [tex]y=4\sqrt{6}\ units[/tex]

Step-by-step explanation:

see the attached figure with letters to better understand the problem

In the right triangle ABD

Find the length side BD

[tex]sin(45\°)=BD/AB[/tex]

[tex]BD=(AB)sin(45\°)[/tex]

we have

[tex]AB=8\ units[/tex]

[tex]sin(45\°)=\frac{\sqrt{2}}{2}[/tex]

substitute the given values

[tex]BD=(8)\frac{\sqrt{2}}{2}[/tex]

[tex]BD=4\sqrt{2}\ units[/tex]

In the right triangle DBC

Find the length side BC

[tex]sin(30\°)=BD/BC[/tex]

[tex]BC=BD/sin(30\°)[/tex]

we have

[tex]sin(30\°)=\frac{1}{2}[/tex]

[tex]BD=4\sqrt{2}\ units[/tex]

substitute the given values

[tex]BC=4\sqrt{2}/\frac{1}{2}[/tex]

[tex]BC=8\sqrt{2}\ units[/tex]

therefore

The value of x is

[tex]x=8\sqrt{2}\ units[/tex]

In the right triangle DBC

Find the length side DC

[tex]cos(30\°)=DC/BC[/tex]

[tex]DC=(BC)cos(30\°)[/tex]

we have

[tex]BC=8\sqrt{2}\ units[/tex]

[tex]cos(30\°)=\frac{\sqrt{3}}{2}[/tex]

substitute the given values

[tex]DC=(8\sqrt{2})\frac{\sqrt{3}}{2}[/tex]

[tex]DC=4\sqrt{6}\ units[/tex]

therefore

the value of y is

[tex]y=4\sqrt{6}\ units[/tex]

${teks-lihat-gambar} calculista

Other Questions