Answer :

aktolkin01
b) 9(a+b)+4 (3a+2b)=21a+17b

Answer:

Option (B) is correct.

The simplified form of the given expression [tex]9\left(a\:+\:b\right)\:+\:4\left(3a\:+\:2b\right)[/tex] is [tex]21a+17b[/tex]

Step-by-step explanation:

 Given: expression [tex]9\left(a\:+\:b\right)\:+\:4\left(3a\:+\:2b\right)[/tex]

We have to simplify the given expression [tex]9\left(a\:+\:b\right)\:+\:4\left(3a\:+\:2b\right)[/tex] and choose the correct option from given options.

Consider the given expression [tex]9\left(a\:+\:b\right)\:+\:4\left(3a\:+\:2b\right)[/tex]

Apply distributive rule, [tex]a\left(b+c\right)=ab+ac[/tex]

We have,

[tex]=9a+9b+12a+8b[/tex]

Adding like terms,

LIKE TERMS are terms having same variable with same degree.

[tex]9a+12a=21a\\\\ \:9b+8b=17b[/tex]

We have,

[tex]=21a+17b[/tex]

Thus, The simplified form of the given expression [tex]9\left(a\:+\:b\right)\:+\:4\left(3a\:+\:2b\right)[/tex] is [tex]21a+17b[/tex]

Other Questions