Answer :
Answer:
Option (B) is correct.
The simplified form of the given expression [tex]9\left(a\:+\:b\right)\:+\:4\left(3a\:+\:2b\right)[/tex] is [tex]21a+17b[/tex]
Step-by-step explanation:
Given: expression [tex]9\left(a\:+\:b\right)\:+\:4\left(3a\:+\:2b\right)[/tex]
We have to simplify the given expression [tex]9\left(a\:+\:b\right)\:+\:4\left(3a\:+\:2b\right)[/tex] and choose the correct option from given options.
Consider the given expression [tex]9\left(a\:+\:b\right)\:+\:4\left(3a\:+\:2b\right)[/tex]
Apply distributive rule, [tex]a\left(b+c\right)=ab+ac[/tex]
We have,
[tex]=9a+9b+12a+8b[/tex]
Adding like terms,
LIKE TERMS are terms having same variable with same degree.
[tex]9a+12a=21a\\\\ \:9b+8b=17b[/tex]
We have,
[tex]=21a+17b[/tex]
Thus, The simplified form of the given expression [tex]9\left(a\:+\:b\right)\:+\:4\left(3a\:+\:2b\right)[/tex] is [tex]21a+17b[/tex]