For a molecule of O2 at room temperature (300 K), calculate the average angular velocity for rotations about the x or y axes. The distance between the O atoms in the molecule is 0.121 nm.

Answer :

cryssatemp

Answer: 6.65 rad/s

Explanation:

Firstly, we need to know that according the kinetic theory of gases, the average kinetic energy [tex]KE[/tex] of a molecule with [tex]i[/tex] degrees of freedom is:

[tex]KE=\frac{i}{2}kT[/tex] (1)

Where:

[tex]i=5[/tex] because oxigen is a diatomic molecule and has 5 degrees of freedom

[tex]k=1.38064852 (10)^{-23} \frac{m^{2}kg}{s^{2}K}[/tex] is the Boltzman constant

[tex]T=300 K[/tex] is the temperature

Then:

[tex]KE=\frac{5}{2}(1.38064852 (10)^{-23} \frac{m^{2}kg}{s^{2}K})(300 K)[/tex] (2)

[tex]KE=1.035 (10)^{-20} \frac{m^{2}kg}{s^{2}}[/tex] (3) With this value of average kinetic energy we can find the average angular velocity, with the following equation:

[tex]KE=\frac{1}{2}I \omega^{2}[/tex] (4)

Where:

[tex]I[/tex] is the moment of inertia

[tex]\omega[/tex] is the angular velocity

Now, [tex]I=m R^{2}[/tex] (5)

Being [tex]m=31.98 g/mol=0.03198 kg/mol[/tex] the molar mass of Oxigen molecule and [tex]R=0.121(10)^{-9}m[/tex] the distance between atoms

[tex]I=(0.03198 kg/mol)(0.121(10)^{-9}m)^{2}[/tex] (6)

[tex]I=4.682(10)^{-22} \frac{kg}{mol} m^{2}[/tex] (7)

Substituting (7) and (3) in (4):

[tex]1.035 (10)^{-20} \frac{m^{2}kg}{s^{2}}=\frac{1}{2} (4.682(10)^{-22} \frac{kg}{mol} m^{2}) \omega^{2}[/tex] (8)

Finding [tex]\omega[/tex]:

[tex]\omega=6.65 rad/s[/tex] (9) This is the average angular velocity for a molecule of O2

Other Questions