Answer :
Answer:
- The function [tex]f(x)[/tex] must be shifted right 1 unit.
- The function [tex]f(x)[/tex] must be shifted up 4 units.
- The function [tex]f(x)[/tex] must be stretched vertically by a factor of 3.
Step-by-step explanation:
There are some transformations for a function f(x):
If [tex]f(x)+k[/tex], then the function is shifted up "k" units.
If [tex]f(x)-k[/tex], then the function is shifted down "k" units.
If [tex]f(x+k)[/tex], then the function is shifted left "k" units.
If [tex]f(x-k)[/tex], then the function is shifted right "k" units.
If [tex]bf(x)[/tex] and [tex]b>1[/tex], then the function is stretched vertically by a factor of "b".
If [tex]bf(x)[/tex] and [tex]0<b<1[/tex], then the function is compressed vertically by a factor of "b".
In this case we have the following parent function [tex]f(x)[/tex] :
[tex]f(x)=x^2[/tex]
And the function [tex]g(x)[/tex]:
[tex]g(x) = 3(x - 1)^2 + 4[/tex]
Based on the explained before, we can describe the transformations necessary to transform the graph of [tex]f(x)[/tex] to the graph of [tex]g(x)[/tex] :
- The function [tex]f(x)[/tex] must be shifted right 1 unit.
- The function [tex]f(x)[/tex] must be shifted up 4 units.
- The function [tex]f(x)[/tex] must be stretched vertically by a factor of 3.