Answered

Which of the following quantities have the dimensions of an acceleration? Which of the following quantities have the dimensions of an acceleration?
a. v²/x
b. xt²
c. x/t²
d. v/t

Answer :

Explanation:

The acceleration of an object is given by :

[tex]a=\dfrac{v-u}{t}[/tex]

Dimension of velocity is, [tex][v]=[LT^{-1}][/tex]      

Dimension of time is, [tex][t]=[T][/tex]        

Dimension of acceleration is, [tex][a]=[LT^{-2}][/tex]    

Option 1.

[tex]\dfrac{v^2}{x}=[LT^{-2}][/tex]

Option 2.

[tex]xt^2=[LT^2][/tex]

Option 3.

[tex]\dfrac{x}{t^2}=[LT^{-2}][/tex]

Option 4.

[tex]\dfrac{v}{t}=[LT^{-2}][/tex]                    

So, from above calculations, it is clear that option (1),(3) and (4) have the dimensions of acceleration. Hence, this is the required solution.

Answer:

a)[tex]\dfrac{v^2}{x}[/tex]

c)[tex]\dfrac{x}{t^2}[/tex]

d)[tex]\dfrac{v}{t}[/tex]

Explanation:

Acceleration :

Acceleration is the rate of change of velocity of the particle.

The unit of acceleration is m/s².

In mathematical form,

[tex]a=\dfrac{dv}{dt}[/tex]

We will check the all option on base of unit

(a). [tex]\dfrac{v^2}{x}[/tex]

Where, v = velocity

x = position

The unit of velocity and position are m/s and m.

The dimension formula of velocity and position

[tex]v = LT^{-1}[/tex]

[tex]x=L[/tex]

Put the unit in the given equations

[tex]\dfrac{v^2}{x}=\dfrac{L^2T^{-2}}{L} =\dfrac{L}{T^2}[/tex]

(b). [tex]xt^2=L\times T^2[/tex]

(c). [tex] \dfrac{x}{t^2}=\dfrac{L}{T^2}[/tex]

(d). [tex]\dfrac{v}{t}=\dfrac{LT^{-1}}{T}=\dfrac{L}{T^2}[/tex]

Hence, This is the required solution.

Other Questions