A 39-foot ladder is leaning against a vertical wall. If the bottom of the ladder is being pulled away from the wall at the rate of 8 feet per second, at what rate is the area of the triangle formed by the wall, the ground, and the ladder changing, in square feet per second, at the instant the bottom of the ladder is 36 feet from the wall?

Answer :

chillmantis

Answer:

The rate of change of the area when the bottom of the ladder (denoted by [tex]b[/tex]) is at 36 ft. from the wall is the following:

[tex]\frac{dA}{dt}|_{b=36}=-571.2\, ft^2/s[/tex]

Explanation:

The Area of the triangle is given by [tex]A=h\times b[/tex] where [tex]h=\sqrt{l^2-b^2}[/tex] (by using the Pythagoras' Theorem) and [tex]b[/tex] is the length of the base of the triangle or the distance between the bottom of the ladder and the wall.

The area is then

[tex]A=\sqrt{l^2-b^2}b[/tex]

The rate of change of the area is given by its time derivative

[tex]\frac{dA}{dt}=\frac{d}{dt}\left(\sqrt{l^2-b^2}\cdot b\right)[/tex]

[tex]\implies \frac{dA}{dt}=\frac{d}{dt}\left(\sqrt{l^2-b^2}\right)\cdot b+\frac{db}{dt}\cdot\sqrt{l^2-b^2}[/tex]

[tex]\implies\frac{dA}{dt}=\frac{1}{2\sqrt{l^2-b^2}}\frac{d}{dt}(l^2-b^2)\cdot b+\sqrt{l^2-b^2}}\cdot \frac{db}{dt}[/tex] Product rule

[tex]\implies\frac{dA}{dt}=-\frac{1}{2\sqrt{l^2-b^2}}\cdot 2\cdot b^2\cdot \frac{db}{dt}+\sqrt{l^2-b^2}}\cdot \frac{db}{dt}[/tex] Chain rule

[tex]\implies\frac{dA}{dt}=-\frac{1}{\sqrt{l^2-b^2}}\cdot b^2\cdot \frac{db}{dt}+\sqrt{l^2-b^2}}\cdot \frac{db}{dt}[/tex]

[tex]\implies\frac{dA}{dt}=\frac{db}{dt}\left(-\frac{1}{\sqrt{l^2-b^2}}\cdot b^2+\sqrt{l^2-b^2}}\right)[/tex]

In here we can identify [tex]b=36\, ft[/tex], [tex]l=39[/tex] and [tex]\frac{db}{dt}=8\,ft/s[/tex].

The result is then

[tex]\frac{dA}{dt}=8\left(-\frac{1}{\sqrt{39^2-36^2}}\cdot 36^2+\sqrt{39^2-36^2}}\right)=-571.2\, ft^2/s[/tex]

Other Questions