A drunken sailor stumbles 580 meters north, 530 meters northeast, then 480 meters northwest. What is the total displacement and the angle of the displacement? (Assume east is the +x-direction and north is the +y-direction.)

a) What's the magnitude?
b) What's the direction? (In degrees and counterclockwise to the x-axis.)

Answer :

Answer:

(a)  1294.66 m

(b) 88.44°

Explanation:

d1 = 580 m North

d2 = 530 m North east

d3 = 480 m North west

(a) Write the displacements in vector forms

[tex]\overrightarrow{d_{1}}=580\widehat{j}[/tex]

[tex]\overrightarrow{d_{2}}=530\left ( Cos45\widehat{i}+Sin45\widehat{j} \right )[/tex]

[tex]\overrightarrow{d_{2}}=374.77\widehat{i}+374.77\widehat{j}[/tex]

[tex]\overrightarrow{d_{3}}=480\left ( - Cos45\widehat{i}+Sin45\widehat{j} \right )[/tex]

[tex]\overrightarrow{d_{3}}=-339.41\widehat{i}+339.41widehat{j}[/tex]

The resultant displacement is given by

[tex]\overrightarrow{d}\overrightarrow{d_{1}}+\overrightarrow{d_{2}}+\overrightarrow{d_{3}}[/tex]

[tex]\overrightarrow{d}=\left ( 374.77-339.41 \right )\widehat{i}+\left ( 580+374.77+339.41 \right )\widehat{j}[/tex]

[tex]\overrightarrow{d}=35.36\widehat{i}+1294.18\widehat{j}[/tex]

magnitude of the displacement

[tex]d ={\sqrt{35.36^{2}+1294.18^{2}}}=1294.66 m[/tex]

d = 1294.66 m

(b) Let θ be the angle from + X axis direction in counter clockwise

[tex]tan\theta =\frac{1294.18}{35.36}=36.6[/tex]

θ = 88.44°

Other Questions