Answer :
Answer:
x1= 1
Step-by-step explanation:
The Cramer's rule say that x1=[tex]\frac{det(A1)}{det(A)}[/tex] where A1 is the matrix A change the column 1 by the vector b.
Then A1= [tex]\left[\begin{array}{cccc}31&6&-3&20\\2&2&-5&-7\\21&2&7&20\\11& 2&-11&-4\end{array}\right][/tex].
Using Octave we have that det(A1)=-3840 and det(A)=-3840.
Then x1=[tex]\frac{-3840}{-3840}=1[/tex].