Answer :
Answer:
a)[tex] C_p=35.42\ \rm J/mol.K[/tex]
b)[tex] C_v=27.1\ \rm J/mol.K[/tex]
Explanation:
Given:
- Heat given to the gas, [tex]Q=19.3\ \rm J[/tex]
- Initial volume of the gas,[tex]V_i=56.7\ \rm cm^3[/tex]
- Final volume of the gas, [tex]V_f=104\ \rm cm^3[/tex]
- Constant pressure of the gas,[tex]P=0.947\ \rm atm[/tex]
- Number of moles of the gas,[tex]n=1.97\times10^{-3}[/tex]
Let R be the gas constant which has value [tex]R=8.31432\times10^3\ \rm N\ m\ kmol^{-1}K^{-1}[/tex]
Work done in the process
[tex]W=PdV\\W=0.947\times(104-56.7)\times10^{-3}\ \rm L\ atm\\W=44.8\times10^{-3}\times101.33\ \rm J\\W=4.43\ \rm J[/tex]
Now Using First Law of thermodynamics
[tex]Q=W+\Delta U\\19.3=4.43+\Delta U\\\Delta U=14.77\ \rm J[/tex]
Let[tex]C_v[/tex] be the molar specific heat of the gas at constant volume given by
[tex]\Delta U=nC_v\Delta T\\14.77=\dfrac{C_v}{R}{PdV}\\14.77=\dfrac{C_v}{R}(0.987\times10^5(104-56.7)\times10^-6})\\C_v=3.26R\\C_v=27.1\ \rm J/mol.K[/tex]
Also we know that
Let[tex]C_p[/tex] be the molar specific heat of the gas at constant pressure given by
[tex]C_p-C_v=R\\C_p=R+C_v\\C_p=4.26R\\C_p=35.42\ \rm J/mol.K[/tex]