Answer :
Answer:
D = 43 m
Explanation:
given,
initial velocity = 18 m/s
angle θ = 60°
total horizontal distance covered by the shell is
[tex]R = \dfrac{v_0^2sin 2\theta}{g}[/tex]
applying conservation of momentum in horizontal direction
m v₀ cos θ = m₁v₁ + m₂ v₂
m v₀ cos θ = 0.5 m v₂
v₂ = 2 v₀ cos θ.
distance covered by the shell from point of explosion
R' = v t
= [tex](2 v_0 cos \theta) (\dfrac{v_0^2sin \theta}{g})[/tex]
=[tex](2 \dfrac{v_0^2cos \theta sin \theta}{g})[/tex]
= [tex]\dfrac{v_0^2sin 2\theta}{g}[/tex]
= R
total distance traveled by the shell is
D = [tex]\dfrac{R}{2}+R'[/tex]
= 1.5 R
= [tex]1.5\dfrac{v_0^2sin 2\theta}{g}[/tex]
D = [tex]1.5\dfrac{18^2sin 2\times 60}{9.81}[/tex]
= 42.9 ≅ 43 m
D = 43 m