Answered

According to Wien's Law, how many times hotter is an object whose blackbody emission spectrum peaks in the blue, at a wave length of 450 nm, than a object whose spectrum peaks in the red, at 700 nm? Please show me your calculations.

Answer :

Answer:1.55 times

Explanation:

Given

First wavelength[tex](\lambda _1)=450 nm[/tex]

Second wavelength[tex](\lambda _2)=700 nm[/tex]

According wien's diplacement law

[tex]\lambda T=constant[/tex]

where [tex]\lambda =wavelength[/tex]

T=Temperature

Let [tex]T_1 and T_2[/tex] be the temperatures corresponding to [tex]\lambda _1 & \lambda _2[/tex] respectively.

[tex]\lambda _1\times T_1=\lambda _2\times T_2[/tex]

[tex]\frac{T_1}{T_2}=\frac{\lambda _2}{\lambda _1}[/tex]

[tex]\frac{T_1}{T_2}=\frac{700}{450}=1.55 [/tex]

Thus object with [tex]\lambda 450 nm[/tex] is 1.55 times hotter than object with wavelength [tex]\lambda =700 nm[/tex]

Other Questions