Answer :
Answer : The enthalpy of reaction [tex](\Delta H_{rxn})[/tex] is, -180.5 kJ/mole
Explanation :
First we have to calculate the mass of solution.
[tex]Mass=Density\times Volume[/tex]
Volume of solution = Volume of HCl + Volume of [tex]Ba(OH)_2[/tex]
Volume of solution = 33.8 mL + 72.5 mL
Volume of solution = 106.3 mL
Density of solution = 1 g/mL
[tex]Mass=1g/mL\times 106.3mL=106.3g[/tex]
The mass of solution is, 106.3 grams.
Now we have to calculate the heat released in the system.
Formula used :
[tex]Q=m\times c\times \Delta T[/tex]
or,
[tex]Q=m\times c\times (T_2-T_1)[/tex]
where,
Q = heat released = ?
m = mass = 106.3 g
[tex]C_p[/tex] = specific heat capacity of water = [tex]4.184J/g^oC[/tex]
[tex]T_1[/tex] = initial temperature = [tex]25^oC[/tex]
[tex]T_2[/tex] = final temperature = [tex]29.22^oC[/tex]
Now put all the given value in the above formula, we get:
[tex]Q=106.3g\times 4.184J/g^oC\times (29.22-25)^ioC[/tex]
[tex]Q=1876.88J=1.877kJ[/tex] (1 kJ = 1000 J)
Now we have to calculate the moles of [tex]Ba(OH)_2[/tex] and HCl.
[tex]\text{Moles of }Ba(OH)_2=\text{Concentration of }Ba(OH)_2\times \text{Volume of solution}[/tex]
[tex]\text{Moles of }Ba(OH)_2=0.154M\times 0.0338L=5.20\times 10^{-3}mol[/tex]
and,
[tex]\text{Moles of }HCl=\text{Concentration of }HCl\times \text{Volume of solution}[/tex]
[tex]\text{Moles of }HCl=0.648M\times 0.0725L=4.69\times 10^{-2}mol[/tex]
Now we have to calculate the limiting and excess reagent.
The balanced chemical reaction is,
[tex]Ba(OH)_2+2HCl\rightarrow BaCl_2+2H_2O[/tex]
From the balanced reaction we conclude that
As, 1 mole of [tex]Ba(OH)_2[/tex] react with 2 mole of [tex]HCl[/tex]
So, [tex]5.20\times 10^{-3}[/tex] moles of [tex]Ba(OH)_2[/tex] react with [tex]5.20\times 10^{-3}\times 2=0.0104[/tex] moles of [tex]HCl[/tex]
From this we conclude that, [tex]HCl[/tex] is an excess reagent because the given moles are greater than the required moles and [tex]Ba(OH)_2[/tex] is a limiting reagent and it limits the formation of product.
Now we have to calculate the moles of [tex]H_2O[/tex]
From the reaction, we conclude that
As, 1 mole of [tex]Ba(OH)_2[/tex] react to give 2 mole of [tex]H_2O[/tex]
So, [tex]5.20\times 10^{-3}[/tex] moles of [tex]Ba(OH)_2[/tex] react with [tex]5.20\times 10^{-3}\times 2=0.0104[/tex] moles of [tex]H_2O[/tex]
Now we have to calculate the change in enthalpy of the reaction.
[tex]\Delta H_{rxn}=-\frac{q}{n}[/tex]
where,
[tex]\Delta H_{rxn}[/tex] = enthalpy of reaction = ?
q = heat of reaction = 1.877 kJ
n = moles of reaction = 0.0104 mole
Now put all the given values in above expression, we get:
[tex]\Delta H_{rxn}=-\frac{1.877kJ}{0.0104mole}=-180.5kJ/mole[/tex]
The negative sign indicates that the heat is released.
Therefore, the enthalpy of reaction [tex](\Delta H_{rxn})[/tex] is, -180.5 kJ/mole