Answer :
A. (m+n)(x)=
5x+4+6x-9=
11x-5
B. (mn)(x)=
(5x+4)(6x-9)=
30x^2+24x-45x-36=
30x^2-21x-36
C. basically sub n(x) for x in m(x)
m(n(x))=
5(6x-9)+4=
30x-45+4=
30x-41
5x+4+6x-9=
11x-5
B. (mn)(x)=
(5x+4)(6x-9)=
30x^2+24x-45x-36=
30x^2-21x-36
C. basically sub n(x) for x in m(x)
m(n(x))=
5(6x-9)+4=
30x-45+4=
30x-41
For this case we have the following functions:
[tex] m (x) = 5x + 4
n (x) = 6x - 9
[/tex]
For the sum of functions we have:
[tex] (m + n) (x) = m (x) + n (x)
[/tex]
Substituting values:
[tex] (m + n) (x) = (5x + 4) + (6x - 9)
[/tex]
Adding similar terms we have:
[tex] (m + n) (x) = 11x - 5
[/tex]
For the multiplication of functions we have:
[tex] (m ⋅ n) (x) = m (x) * n (x)
[/tex]
Substituting values:
[tex] (m + n) (x) = (5x + 4) * (6x - 9)
[/tex]
If we apply the distributive property we have:
[tex] (m + n) (x) = 30x ^ 2 - 45x + 24x - 36
[/tex]
Adding similar terms we have:
[tex] (m + n) (x) = 30x ^ 2 - 21x - 36
[/tex]
For the composition of functions we have:
[tex] m [n (x)] = 5 (6x - 9) + 4
[/tex]
Rewriting we have:
[tex] m [n (x)] = 30x - 45 + 4
m [n (x)] = 30x - 41 [/tex]