Can someone help me with this truth table. I just don't understand how to do it.

An implication [tex](p\implies q)[/tex] is true if either the premise [tex](p)[/tex] is false, or both the premise and conclusion [tex](p\text{ and }q)[/tex] are both true, and false otherwise.
[tex]\begin{array}{c|c|c|c|c|c|c}p&q&p\implies q&\neg q&(p\implies q)\land\neg q&\neg p&(p\implies q)\land\neg q\implies\neg p\\T&T&T&&&&\\T&F&F&&&&\\F&T&T&&&&\\F&F&T&&&&\end{array}[/tex]
Negation [tex](\neg q)[/tex] is straightforward; if a statement is true, then its negation is false, and vice versa.
[tex]\begin{array}{c|c|c|c|c|c|c}p&q&p\implies q&\neg q&(p\implies q)\land\neg q&\neg p&(p\implies q)\land\neg q\implies\neg p\\T&T&T&F&&F\\T&F&F&T&&F\\F&T&T&F&&T\\F&F&T&T&&T\end{array}[/tex]
A conjunction [tex](p\land q)[/tex] is true if both premises are true, and false otherwise.
[tex]\begin{array}{c|c|c|c|c|c|c}p&q&p\implies q&\neg q&(p\implies q)\land\neg q&\neg p&(p\implies q)\land\neg q\implies\neg p\\T&T&T&F&F&F\\T&F&F&T&F&F\\F&T&T&F&F&T\\F&F&T&T&T&T\end{array}[/tex]
Finally, by the rules of implication, we can fill the last column:
[tex]\begin{array}{c|c|c|c|c|c|c}p&q&p\implies q&\neg q&(p\implies q)\land\neg q&\neg p&(p\implies q)\land\neg q\implies\neg p\\T&T&T&F&F&F&T\\T&F&F&T&F&F&T\\F&T&T&F&F&T&T\\F&F&T&T&T&T&T\end{array}[/tex]