Answer :
Answer:
[tex]v_{x}=8222m/s\\v_{y}=7301m/s[/tex]
Explanation:
From the exercise we know that
[tex]v_{ox}=6580m/s\\a_{x}=1.81m/s^2\\a_{y}=8.05m/s^2[/tex]
[tex]t=907s[/tex]
Knowing the following formula we can calculate the final velocity
[tex]v=v_{o}+at[/tex]
[tex]v_{x}=v_{ox}+a_{x}t[/tex]
[tex]v_{x}=6580m/s+(1.81m/s^2)(907s)=8222m/s[/tex]
[tex]v_{y}=v_{oy}+a_{y}t[/tex]
[tex]v_{y}=(8.05m/s^2)(907s)=7301m/s[/tex]