Answered

Find the value of k so that the graph of the following system of equations has no solution. 3x-2y-12=0 ; kx+6y-10=0

Answer :

Answer:

k = -9

Step-by-step explanation:

The equations are of the form

ax+by+c=0

Two equations have no solution when

[tex]\frac{a_1}{a_2}=\frac{b_1}{b_2}\neq \frac{c_1}{c_2}[/tex]

3x-2y-12=0 ; kx+6y-10=0

[tex]\frac{3}{k}=\frac{-2}{6}\\\Rightarrow k=3\times \frac{6}{-2}\\\Rightarrow k=-9[/tex]

[tex]\frac{c_1}{c_2}=\frac{-12}{-10}=1.2[/tex]

So,

[tex]\frac{3}{-9}=\frac{-2}{6}\neq 1.2[/tex]

Hence, k = -9

Other Questions