Answer :
Explanation:
Given that,
Position of the particle at t = 0,
[tex]y=(6i+10j)\ m[/tex]
Velocity of the particle at t = 0
[tex]u=(1i+6j)\ m[/tex]
Acceleration of the particle,
[tex]a=(5i+7j)\ m/s^2[/tex]
Solution,
(a) Let v is the velocity at t = 10 s. Using the equation of kinematics as :
[tex]v=u+at[/tex]
[tex]v=(1i+6j)+(5i+7j)10[/tex]
[tex]v=(51i+76j)\ m/s[/tex]
(b) Let y' is the position at t = 1 s. Again using second equation of kinematics as :
[tex]y'=y+ut+\dfrac{1}{2}at^2[/tex]
[tex]y'=(6i+10j)+(1i+6j)1+\dfrac{1}{2}\times (5i+7j)1^2[/tex]
[tex]y'=\dfrac{19}{2}i+\dfrac{39}{2}j[/tex]
(c) Magnitude of y',
[tex]|y'|=\sqrt{(\dfrac{19}{2})^2+(\dfrac{39}{2})^2}[/tex]
|y'| = 21.69 meters
Direction of the y',
[tex]tan\theta=\dfrac{y}{x}[/tex]
[tex]tan\theta=\dfrac{39/2}{19/2}[/tex]
[tex]\theta=64.02^{\circ}[/tex]
Hence, this is the required solution.