Answer :
Answer:
[tex]v_1=-2.616\ m/s[/tex]
Explanation:
Given that,
Mass of ball 1, [tex]m_1=0.25\ kg[/tex]
Initial speed of ball 1, [tex]u_1=5\ m/s[/tex]
Mass of ball 2, [tex]m_2=0.8\ kg[/tex]
Initial speed of ball 2, [tex]u_2=0[/tex] (at rest)
After the collision,
Final speed of ball 2, [tex]v_2=2.38\ m/s[/tex]
Let [tex]v_2[/tex] is the final speed of ball 1.
Initial momentum of the system is :
[tex]p_i=m_1u_1+m_2u_2[/tex]
[tex]p_i=0.25\times 5+0[/tex]
[tex]p_i=1.25\ m/s[/tex]
Final momentum of the system is :
[tex]p_f=m_1v_1+m_2v_2[/tex]
[tex]p_f=0.25\times v_1+0.8\times 2.38[/tex]
[tex]p_f=0.25 v_1+1.904[/tex]
According the law of conservation of linear momentum :
initial momentum = final momentum
[tex]1.25=0.25 v_1+1.904[/tex]
[tex]v_1=-2.616\ m/s[/tex]
So, the final velocity of ball 1 is (-2.616)m/s.
Answer:
mass of ball 1= 0.25 kg
initial speed of ball 1= 5. m/s
mass ball 2= 0.8 kg
initial speed ball 2= 0 ( it was at rest)
final speed of ball 2= 2.38m/s
the formula is:
m1 . v 1 + m2 . v2 = m1 . v1f+ m2 . v2f
0.25 . 5 + 0.8 . 0 = o.25 . x + 0.8 . 2.38
-2.6288 m/s
Explanation:
i got it right on the flvs