An electric scale gives a reading equal to the true weight plus a random error that
is normally distributed with mean 0 and standard deviation s = .1 mg. Suppose
that the results of five successive weighings of the same object are as follows: 3.142,
3.163, 3.155, 3.150, 3.141.
(a) Determine a 95 percent confidence interval estimate of the true weight.
(b) Determine a 99 percent confidence interval estimate of the true weight.

Answer :

Answer:

a) (3.1388,3.1616)

b) (3.1313,3.1691)  

Step-by-step explanation:

We are given the following data set:

3.142,  3.163, 3.155, 3.150, 3.141

Formula:

[tex]\text{Standard Deviation} = \sqrt{\displaystyle\frac{\sum (x_i -\bar{x})^2}{n-1}}[/tex]  

where [tex]x_i[/tex] are data points, [tex]\bar{x}[/tex] is the mean and n is the number of observations.  

[tex]Mean = \displaystyle\frac{\text{Sum of all observations}}{\text{Total number of observation}}[/tex]

[tex]Mean =\displaystyle\frac{15.751}{5} = 3.1502[/tex]

Sum of squares of differences =

[tex]=0.00006724 + 0.00016384 + 0.00002304 + 4.000000000e^{-8} + 0.00008464 \\=0.0003388[/tex]

[tex]S.D = \sqrt{\displaystyle\frac{0.0003388}{4}} = 0.0092[/tex]

a) 95% Confidence interval:

[tex]\bar{x} \pm t_{critical}\displaystyle\frac{s}{\sqrt{n}}[/tex]

Putting the values, we get,

[tex]t_{critical}\text{ at degree of freedom 4 and}~\alpha_{0.05} = \pm 2.776[/tex]

[tex]3.1502 \pm 2.776(\displaystyle\frac{0.0092}{\sqrt{5}} ) = 3.1502 \pm 0.0114 = (3.1388,3.1616)[/tex]

b) 99% Confidence interval:

[tex]\bar{x} \pm t_{critical}\displaystyle\frac{s}{\sqrt{n}}[/tex]

Putting the values, we get,

[tex]t_{critical}\text{ at degree of freedom 4 and}~\alpha_{0.01} = \pm 4.6022[/tex]

[tex]3.1502 \pm 4.6022(\displaystyle\frac{0.0092}{\sqrt{5}} ) = 3.1502 \pm 0.0189 = (3.1313,3.1691)[/tex]

Other Questions