Are the strengths of the interactions between the particles in the solute and between the particles in the solvent before the solute and solvent are combined greater than, less than, or equal to the strengths of the interactions between solute particles and solvent particles after dissolution? Explain.

Answer :

Answer:

Less than

Explanation:

The process of dissolution occurs as a kind of "tug of war". On one side are the solute-solute and solvent-solvent interaction forces, while on the other side are the solute-solvent forces.

Only when the solute-solvent forces are strong enough to overcome the pre-mixing forces do they overcome the "tug of war", and thus dissolution occurs.

Thus, it is concluded that the interaction forces between solute particles and solvent particles before they are combined are less than the interaction forces after dissolution.

For the dissolution of the solute particles in the solvent particles, the force of attraction between the particles of solute and between the particle of solvent must be less than the interaction between the solute particles and solvent particles after dissolution.

In a solution the forces act between the solute molecules, solvent molecules, and solute-solvent molecules. For the dissociation to take place the bond between the solute and solvent has to be formed. The resultant will result in the dissolution of the solute in the solvent mixture. The strong solute-solute and solvent-solvent bond will result in difficulty in the formation of the solute-solvent bond, and the dissolution will not take place.

Thus for the dissolution of the solute particles in the solvent particles, the force of attraction between the particles of solute and between the particle of solvent must be less than the interaction between the solute particles and solvent particles after dissolution.

For more information about dissolution, refer to the link:

https://brainly.com/question/9949108

Other Questions