Answer :
Answer:
(A) 1.58 Hz
(B) 0.99 m/s
(C) 0.1 kg
(D) 0.4 m
Explanation:
extension of the spring (x) = 10 cm = 0.1 m
acceleration due to gravity (g) = 9.8 m/s^{2}
(A) force = mg = kx
where m = mass
g = acceleration due to gravity
x = extension
mg = kx
substituting the values 0f g and x we have
9.8m = 0.1k
therefore k = 9.8m/0.1
k = 98m
formula for frequency (f) = [tex]\frac{1}{2π}.\sqrt{\frac{k}{m} }[/tex]
inserting the value of spring constant (k) as 98m into the equation above
f = [tex]\frac{1}{2π}.\sqrt{\frac{98m}{m} }[/tex]
f = [tex]\frac{1}{2π}.\sqrt{98}[/tex]
f = 1.58 Hz
(B) find the speed of the object when it is 8 cm below its initial position
from the conservation of energy,
initial potential energy (U) + kinetic energy (K.E) = 0
([tex]0.5ky^{2} - mgy) + 0.5mv^{2}[/tex]
v = [tex]\sqrt{2gy - \frac{k}{m}.y^{2}}[/tex]
where y = position of the spring = 8 cm (0.08m) and k = 98m as in (A) above
v = [tex]\sqrt{2 x 9.8 x 0.08 - \frac{98m}{m}.0.08^{2}}[/tex]
v = [tex]\sqrt{1.568 - (98 x 0.0064}[/tex]
v = 0.99 m/s
(C) find the mass (m) of the object when an object of mass 300 g is attached to the first object, after which the system oscillates with half the original frequency.
after addition of the 300 g mass
new frequency = half the initial frequency
[tex]\frac{1}{2π}.\sqrt{\frac{k}{m + 300} }[/tex] = 0.5 x [tex]\frac{1}{2π}.\sqrt{\frac{k}{m} }[/tex]
[tex]\sqrt{\frac{k}{m + 300} }[/tex] = 0.5 x [tex]\sqrt{\frac{k}{m} }[/tex]
[tex](\sqrt{\frac{k}{m + 300} })^{2} =(0.5 x \sqrt{\frac{k}{m} })^{2}[/tex]
[tex]\frac{k}{m + 300} =0.25 x \frac{k}{m}[/tex]
[tex]\frac{1}{m + 300} =0.25 x \frac{1}{m}[/tex]
0.25 (m + 300) = m
m - 0.25m = 0.25 x 300
m- 0.25m = 75
0.75 m = 75
m = 100 g = 0.1 kg
(D) find the new equilibrium position
from mg = kx we can find the new equilibrium position (x)
where m = m + 300 = m + 0.3 (in kg)
(m+0.3)g = kx
x = [tex]\frac{(m+0.3)g}{k}[/tex]
recall that k = 98m
x = [tex]\frac{(m+0.3)g}{98m}[/tex]
now substituting the values of m and g into the equation
x = [tex]\frac{(0.1 + 0.3) x 9.8}{98 x 0.1}[/tex]
x = 0.4 m