Answer :

Answer:

Plant c is  [tex](\frac{16}{25})[/tex]  times as tall as plant b.

Step-by-step explanation:

Here, the length of the plant b = [tex]6\frac{2}{3}[/tex] inches

Solving the mixed fraction, we get:

[tex]6\frac{2}{3}  = \frac{(6 \times 3) + 2}{3}  = \frac{20}{3}[/tex]

So, the length of  plant b =  [tex]\frac{20}{3}[/tex] inches

Also, the length of the plant c = [tex]4\frac{4}{15}[/tex] inches

Solving the mixed fraction, we get:

[tex]4\frac{4}{15}  = \frac{(15 \times 4) + 4}{15}  = \frac{64}{15}[/tex]

So, the length of  plant c =  [tex]\frac{64}{15}[/tex] inches

Now, let us assume that:

Plant c  = K  times as tall as plant b.

or, Length of plant c   = K x ( Length of plant b)

[tex]\implies (\frac{64}{15})  = K \times (\frac{20}{3})\\\implies K = (\frac{64}{15}) \times (\frac{3}{20})  = (\frac{16}{25})\\\implies K =  (\frac{16}{25})[/tex]

Hence,  Plant c is  [tex](\frac{16}{25})[/tex]  times as tall as plant b.

Other Questions