Answer :
Answer:
[tex]a=\dfrac{F_0-kv}{m}[/tex]
[tex]v=\dfrac{F_0}{k} (1-e^{\dfrac{-kt}{m}})[/tex]
Explanation:
Given that
Constant force =Fo
mass = m
F= - k v
We know that
F(net)= m a
a=acceleration
Fo - k v = m a
[tex]a=\dfrac{F_0-kv}{m}[/tex]
The acceleration in terms k Fo and m given as
[tex]a=\dfrac{F_0-kv}{m}[/tex]
We also know that
[tex]a=\dfrac{dv}{dt}[/tex]
[tex]\dfrac{dv}{dt}=\dfrac{F_0-kv}{m}[/tex]
[tex]\dfrac{dv}{F_0-kv}=\dfrac{dt}{m}[/tex]
[tex]\int_{0}^{v}\dfrac{dv}{F_0-kv}=\int_{0}^{t}\dfrac{dt}{m}\\\left[\dfrac{-1}{k}\ln(F_0-kv)\right]_0^v=\left[\dfrac{t}{m}\right]_0^t\\\dfrac{t}{m}=\dfrac{-1}{k}\ln\dfrac{F_0-kv}{F_0}[/tex]
[tex]\dfrac{F_0-kv}{F_0}=e^{\dfrac{-kt}{m}}\\\\F_0-kv=F_oe^{\dfrac{-kt}{m}}\\kv=F_0-F_oe^{\dfrac{-kt}{m}}[/tex]
[tex]v=\dfrac{F_0}{k} (1-e^{\dfrac{-kt}{m}})[/tex]