Answer :

calculista

Answer:

(2,2)

Step-by-step explanation:

step 1

Find the equation of f(x)

is a line that passes through the points (0,6) and (3,0)

Find the slope

[tex]m=(0-6)/(3-0)=-2[/tex]

The function f(x) in slope intercept form is equal to

[tex]f(x)=-2x+6[/tex]

step 2

Find the inverse

Let y=f(x)

[tex]y=-2x+6[/tex]

Exchange the variables x for y and y for x

[tex]x=-2y+6[/tex]

Isolate the variable y

[tex]2y=-x+6[/tex]

[tex]y=-0.5x+3[/tex]

Let

[tex]f^{-1}(x)=y[/tex]

[tex]f^{-1}(x)=-0.5x+3[/tex]

step 3

Solve the system of equations

[tex]f(x)=-2x+6[/tex]

[tex]f^{-1}(x)=-0.5x+3[/tex]

equate both functions

[tex]-0.5x+3=-2x+6[/tex]

solve for x

[tex]2x-0.5x=6-3[/tex]

[tex]1.5x=3[/tex]

[tex]x=2[/tex]

substitute the value of x in any of the functions

[tex]f(x)=-2(2)+6=2[/tex]

The solution is the point (2,2)

therefore

Their point of intersection is (2,2)

Answer:

C

Step-by-step explanation:

2, 2

Other Questions