Answer :

(1)   x = 12,   (2)   [tex]x=3\frac{1 }{2}[/tex]

Solution:

(1)     If the two triangles are similar and the angles of two triangles are congruent then the corresponding sides are in proportion.

⇒ [tex]\frac{25}{10}=\frac{30}{x}[/tex]

Do cross multiply.

⇒ [tex]25 \times x=30 \times 10[/tex]

Divide both sides of the equation by 25 to equal the expression.

⇒ [tex]x=\frac{30 \times 10}{25}[/tex]

x = 12

(2)   Side of triangle = [tex]4\frac{1}{3} =\frac{13}{3}[/tex]

If the two triangles are similar and the angles of two triangles are congruent then the corresponding sides are in proportion.

⇒ [tex]\frac{26}{\frac{13}{3} }=\frac{21}{x}[/tex]

Do cross multiply.

⇒ [tex]26 \times x=21 \times \frac{13}{3}[/tex]

⇒ [tex]26 \times x=7 \times 13[/tex]

Divide both sides of the equation by 26 to equal the expression.

⇒ [tex]x=\frac{7 \times 13}{26}[/tex]

⇒ [tex]x=\frac{7 }{2}[/tex]

⇒ [tex]x=3\frac{1 }{2}[/tex]

Other Questions