Find support reactions at A and B and then calculate the axial force N, shear force V, and bending moment M at mid-span of AB. Let L 5 4 m, q0 5 160 N/m, P 5 200 N, and M0 5 ? 380 N m.

Answer :

Answer:

[tex]A=198N[/tex],  [tex]B=-38.33N[/tex], [tex]N=0[/tex], [tex]V=118N[/tex], [tex]M=-37.33\ Nm[/tex]

Explanation:

It is given that [tex]L=4m, \ q_{0}=160N/m,\ P=200N,\ M_{0}=380 N-m[/tex].

Thus taking equilibrium in x-direction (horizontal)

∑[tex]F_{x}=0[/tex] ⇒ [tex]B_{x}=-\frac{3}{5}* P=-\frac{3}{5} *200 N=-120N[/tex]

Taking Equilibrium moments for point A.

Giving ∑[tex]M_{A} =0[/tex]

Thus

[tex]B_{y}*L+\frac{4}{5}*P*(L+\frac{L}{2})=M_{0}+\frac{1}{2}*q_{0}*L*\frac{L}{3}[/tex]

So it can be written as

[tex]B_{y}=\frac{1}{L}*(M_{0}+\frac{1}{2}*q_{0}*L*\frac{L}{3} -\frac{4}{5} *P*(L +\frac{L}{2}))[/tex]

[tex]B_{y}=\frac{1}{4}*(380+\frac{1}{2}*160*4*\frac{4}{3} -\frac{4}{5} *200*(4 +\frac{4}{2}))[/tex]

[tex]B_{y}=-38.33N[/tex]

Now taking Equilibrium in y-direction (Vertical).

∑[tex]F_{y} =0[/tex]

thus it becomes as

[tex]A_{y}+B_{y}=-\frac{4}{5}*P+\frac{1}{2} *q_{0}*L[/tex]

it can be written as

[tex]A_{y}=-\frac{4}{5}*P+\frac{1}{2} *q_{0}*L-B_{y}[/tex]

[tex]A_{y}=-\frac{4}{5}*200+\frac{1}{2} *160*4-(-38.33)[/tex]

[tex]A_{y}=198N[/tex]

Now, As for equilibrium in x=direction

∑[tex]F_{x}=0[/tex] ⇒ [tex]N=0[/tex]

And for equilibrium in y- direction

∑[tex]F_{y} =0[/tex]

[tex]A_{y}=V+\frac{1}{2}*\frac{q_{0} }{2} *\frac{L}{2}[/tex]

it can be written as

[tex]V=A_{y}-\frac{1}{2}*\frac{q_{0} }{2} *\frac{L}{2}[/tex]

[tex]V=198-\frac{1}{2}*\frac{160}{2} *\frac{4}{2}[/tex]

[tex]V=118N[/tex]

Now taking equilibrium of moments about A,

∑[tex]M_{A} =0[/tex]

[tex]M_{0}+M=\frac{1}{2}*\frac{q_{0}*L }{4} *\frac{2*L}{3*2}+V*\frac{L}{2}[/tex]

it can be written as

[tex]M=\frac{1}{2}*\frac{q_{0}*L }{4} *\frac{2*L}{3*2}+V*\frac{L}{2}-M_{0}[/tex]

[tex]M=\frac{1}{2}*\frac{160*4}{4} *\frac{2*4}{3*2}+118*\frac{4}{2}-380[/tex]

[tex]M=-37.33\ Nm[/tex]

${teks-lihat-gambar} umairfeb221999

Other Questions