Answer :

Hrishii

Step-by-step explanation:

[tex]f(x) = 3 {x}^{2} + 1 \: \: \& \: \: g(x) = 1 - x \\ \\ \therefore \: (f - g)(x) = (3 {x}^{2} + 1) - (1 - x) \\ \\ \therefore \: (f - g)(x) = 3 {x}^{2} + 1- 1 + x \\ \\ \therefore \: (f - g)(x) = 3 {x}^{2} + x \\ \\ \therefore \: (f - g)(2) = 3( {2}) ^{2} + 2 \\ \\ \therefore \: (f - g)(2) = 3 \times 4 + 2 \\ \\ \therefore \: (f - g)(2) = 12 + 2 \\ \\ \huge \purple {\boxed{\therefore \: (f - g)(2) = 14 }}\\ \\ [/tex]