Answered

Algebraicallycalculate the rise time and fall timevalues for a sine wave at an arbitrary frequency f0(expressed in Hz). Assume that the sine wave has zeroaverage, thus Vmin= −Vmax.Express the rise time in units of the period T= 1/ f0.Using your algebraic results, calculate the rise time inμs for the sinusoidal signal at 50 kHz. Keep 4 significantdigits.

Answer :

Answer:

185.95 μsec

Explanation:

Given that:

Sine wave = [tex]Amsinw_{o}t[/tex]

[tex]V_{min}=-V_{max}[/tex]

Sinusodial signal [tex]f_{o}[/tex]  = 50 kHz = [tex]5*10^4Ht[/tex]

Rise time is said to be defined as the time needed for a pulse to rise from 10% - 90% of maximum rate.

[tex]t_1[/tex] = 10% = 0.1 Am

[tex]t_2[/tex] =90% = 0.9 Am

Using sine wave for  [tex]t_1[/tex]; we have:

[tex]Amsinw_{o}t_1[/tex]  = 0.1 Am

[tex]sinw_{o}t_1[/tex] = 0.1

[tex]w_{o}t_1 = sin^{-1}(0.1)[/tex]

[tex]w_{o}t_1[/tex] = 5.7392

[tex]t_1=\frac{5.7392}{2 \pi f_0}[/tex]

[tex]t_1=\frac{0.9134}{ f_0}[/tex]

Using sine wave for [tex]t_2[/tex] ; we have:

[tex]Amsinw_{o}t_2[/tex]  = 0.9 Am

[tex]sinw_{o}t_2 = 0.9[/tex]

[tex]w_ot_2[/tex] = [tex]sin^{-1}(0.9)[/tex]

[tex]w_ot_2[/tex] = 64.158

[tex]t_2[/tex] = [tex]\frac{64.1581}{2 \pi f_o}[/tex]

[tex]t_2[/tex] = [tex]\frac{10.211}{f_o}[/tex]

Change in rise time [tex]t_r[/tex] = [tex]t_2[/tex] -  [tex]t_1[/tex]

[tex]t_r[/tex] = [tex]\frac{10.211}{f_o}-\frac{0.9134}{ f_0}[/tex]

[tex]t_r[/tex] = [tex]\frac{10.211-0.9134}{f_o}[/tex]

[tex]t_r[/tex] = [tex]\frac{9.2976}{f_o}[/tex]

since;   [tex]f_{o}[/tex]  = 50 kHz = [tex]5*10^4Ht[/tex]

[tex]t_r[/tex] = [tex]\frac{9.2976}{5*10^4}[/tex]

[tex]t_r[/tex] = 1.85952 × 10⁻⁴

[tex]t_r[/tex] = 185.952 × 10⁻⁶ sec

[tex]t_r[/tex] =  185.95 μ sec

∴ The rise in time in (μ sec) for the sinosodial signal at 50 kHz = 185.95 μ sec

Other Questions