Answer :
Answer:
let M=ex +y and N=2 +x +yey
(a) σM/σy =1 and σN/σx = 1
since σM/σy = σN/σx , it is an exact equation
(b) ∫M dx + ∫terms of N not containing x
∫(ex + y) dx +∫yey + 2 dy
xy + ex +yey -ey +2y=C
(c) using y(0)=1
C=3
(d) from the differential equation given
by dividing through by dx
dy/dx = (-y-ex) /(2+x+yey)
from the solution
[tex]\frac{d}{dx}[/tex](xy + ex +yey -ey =2y)=[tex]\frac{d}{dx}[/tex](3)
x[tex]\frac{dx}{dy}[/tex] + y + ex + yey[tex]\frac{dy}{dx}[/tex] + ey[tex]\frac{dx}{dy}[/tex] - ey[tex]\frac{dy}{dx}[/tex] + 2[tex]\frac{dy}{dx}[/tex] = 0
[tex]\frac{dy}{dx}[/tex]= (-y-ex) /(2+x+yey)
Step-by-step explanation:
1. integrate with respect to x keeping y constant
2. integrate terms without x in N
3. Result of 1 + result 2= C
4. insert the condition given into 3
5. compare the solution of 4 to the differential equation