Answer :
Answer:
a) 0.804
b) 0.023
c) 0.173
Step-by-step explanation:
We are given the following information in the question:
Mean, μ = 8.4 minutes
Standard Deviation, σ = 1.7 minutes
We are given that the distribution of response time is a bell shaped distribution that is a normal distribution.
Formula:
[tex]z_{score} = \displaystyle\frac{x-\mu}{\sigma}[/tex]
a) P(between 5 and 10 min)
[tex]P(5 \leq x \leq 10) = P(\displaystyle\frac{5 - 8.4}{1.7} \leq z \leq \displaystyle\frac{10-8.4}{1.7}) = P(-2 \leq z \leq 0.941)\\\\= P(z \leq 0.941) - P(z < -2)\\= 0.827 - 0.023 = 0.804 = 80.4\%[/tex]
[tex]P(5 \leq x \leq 10) = 80.4\%[/tex]
b) P(less than 5 min)
P(x < 5)
[tex]P( x< 5) = P( z > \displaystyle\frac{5 - 8.4}{1.7}) = P(z < -2)[/tex]
Calculation the value from standard normal z table, we have,
[tex]P(x < 5) = 0.023= 2.3\%[/tex]
c) P(more than 10 min)
P(x > 10)
[tex]P( x > 10) = P( z > \displaystyle\frac{10 - 8.4}{1.7}) = P(z > 0.9411)[/tex]
[tex]= 1 - P(z \leq 0.9411)[/tex]
Calculation the value from standard normal z table, we have,
[tex]P(x > 10) = 1 - 0.827= 0.173= 17.3\%[/tex]
Answer:
(a) 0.80364
(b) 0.02275
(c) 0.17361
Step-by-step explanation:
We are given that the police response time has a normal distribution with a mean of 8.4 minutes and a standard deviation of 1.7 minutes i.e.;
Mean, [tex]\mu[/tex] = 8.4 minutes and Standard deviation, [tex]\sigma[/tex] = 1.7 minutes
Also, normal distribution is given by;
Z score = [tex]\frac{X -\mu}{\sigma}[/tex] ~ N(0,1)
Let X = the response time
(a) P( between 5 and 10 min ) = P(5 <= X <= 10) = P(X <= 10) - P(X < 5)
P(X <= 10) = P( [tex]\frac{X -\mu}{\sigma}[/tex] <= [tex]\frac{10-8.4}{1.7}[/tex] ) = P(Z <= 0.94) = 0.82639
P(X < 5) = P( [tex]\frac{X -\mu}{\sigma}[/tex] < [tex]\frac{5-8.4}{1.7}[/tex] ) = P(Z < -2) = 1 - P(Z < 2) = 1 - 0.97725 = 0.02275
Therefore, P( between 5 and 10 min ) = 0.82639 - 0.02275 = 0.80364 .
(b) P(X < 5 min) = P( [tex]\frac{X -\mu}{\sigma}[/tex] < [tex]\frac{5-8.4}{1.7}[/tex] ) = P(Z < -2) = 1 - P(Z < 2) = 1 - 0.97725 = 0.02275 .
(c) P(X > 10) = 1 - P(X <= 10) = 1 - 0.82639 = 0.17361 .