Based on Pythagorean identities, which equation is true? sine squared theta minus 1 = cosine squared theta secant squared theta minus tangent squared theta = negative 1 negative cosine squared theta minus 1 = negative sine squared theta cotangent squared theta minus cosecant squared theta = negative 1

Answer :

opudodennis

Answer:

[tex]Cot^2\theta-Csc^2\theta=-1[/tex]

Step-by-step explanation:

The only Pythagorean identities are:

[tex]1. \ Sin^2\theta+Cos^2\theta=1[/tex]

[tex]2. \ 1+Tan^2\theta=Sec^2\theta[/tex]

[tex]3. \ 1+Cot^2\theta=Csc^2\theta[/tex]

[tex]4. \ Sin^2\theta=1-Cos^2\theta\\ \ \ Cos^2\theta=1-Sin^2\theta[/tex]

 

Therefore,[tex]Cot^2\theta-Csc^2\theta=-1[/tex] is correct as it's one of the pythagorean identities.

MrRoyal

The true equation of the Pythagorean identity is [tex]\cot^2(\theta) - \csc^2(\theta) = -1[/tex]

How to determine the equation?

A Pythagorean identity is represented as:

[tex]\sin^2(\theta) +\cos^2(\theta) = 1[/tex]

Divide through by sin^2(theta)

[tex]\frac{\sin^2(\theta)}{\sin^2(\theta)} +\frac{\cos^2(\theta)}{\sin^2(\theta)} = \frac{1}{\sin^2(\theta)}[/tex]

Evaluate the quotients

[tex]1 + \cot^2(\theta) = \csc^2(\theta)[/tex]

Rewrite as:

[tex]\cot^2(\theta) - \csc^2(\theta) = -1[/tex]

Hence, the true equation of the Pythagorean identity is [tex]\cot^2(\theta) - \csc^2(\theta) = -1[/tex]

Read more about Pythagorean identity at:

https://brainly.com/question/95257

Other Questions