Answer :
Answer:
6 inches
Explanation:
A grocer stocks cans of vegetables on a shelf. The peas are in cans that have a circular bottom with an area of 9.42 square inches and hold 56.52 cubic inches. How tall are the cans
The formula for finding the volume of a can:
V = ab ×H
where, V is the volume of the can
ab is the area of the base
H is the height of the can
V=56.52 cubic inches
Ab= 9.42 square inches
H=?
Therefore V = ab ×H
to find H
V=AbH
H=56.52/9.42
=6 INCHES
Answer: Each can is 6 inches tall
Explanation:
Information from the question says that the circular part of the container(can) containing the vegetables has an area of 9.42 square inches.
Now, it's important to note that the formula for calculating the area of a circle is π × r × r. Therefore π × r × r =9.42 square inches
Similarly, each can on the shelf which contained peas/vegetables had volumes of 56.52 cubic inches.
The formula for calculating the volume of a cylinder which is the shape of the cans described in the question is π × r × r × h ( where π = 22/7, r= radius, h = height).
Again, π × r × r h = 56.52 cubic inches (the entire volume of each of the cans).
To find the height of the cylinders, we simply divide the volume of the cylinder by the area of the circle.
i.e (π × r × r ×h)/(π × r × r) = h
Dividing the numerator by the denominator, we will be left with "h" only which is the length of the cans being sought after
Applying the aforementioned principle, 56.52 cubic inches/9.42 square inches = 6 inches.