Answer :

Answer:

x=3

Step-by-step explanation:

We want to solve the equation:

[tex]5 + 20 \times {2}^{2 - 3x} = 10 \times {2}^{ - 2x} + 5[/tex]

We subtract 5 from both sides to get:

[tex]20 \times {2}^{2 - 3x} = 10 \times {2}^{ - 2x} [/tex]

We divide both sides by 10 to get:

[tex]2 \times {2}^{2 - 3x} = {2}^{ - 2x} [/tex]

[tex] {2}^{1} \times {2}^{2 - 3x} = {2}^{ - 2x} [/tex]

We now simplify LHS using the product rule:

[tex] {2}^{1 + 2 - 3x} = {2}^{ - 2x} [/tex]

Since the base is the same on both sides, we equate the exponents to get:

[tex]1 + 2 - 3x = - 2x[/tex]

[tex]1 + 2 = - 2x + 3x[/tex]

[tex]x = 3[/tex]

Answer:

the answer is 3

Step-by-step explanation:

hope this is helpful :)))))))))))))