Answer :
Answer:
[tex]1.27\times 10^{12}\Omega/m[/tex]
Explanation:
We are given that
Diameter=d=[tex]\mu m[/tex]
Thickness=[tex]1\mu m[/tex]
Radius=[tex]r=\frac{d}{2}=\frac{1}{2}\mu m=0.5\times 10^{-6} m[/tex]
Using [tex]1\mu m=10^{-6} m[/tex]
Dielectric constant=8
Resistance =[tex]R=2\times 10^5\Omega cm^2[/tex]
Internal specific resistance=r=100 ohm cm=[tex]100\times \frac{1}{100}\Omega-m=1\Omega m[/tex]
Using 1 m=100 cm
Internal resistance per unit length=[tex]\frac{r}{A}=\frac{1}{\pi r^2}=\frac{1}{3.14\times (0.5\times 10^{-6})^2}=1.27\times 10^{12}\Omega/m[/tex]
Using [tex]\pi=3.14[/tex]
Internal resistance per unit length=[tex]1.27\times 10^{12}\Omega/m[/tex]