Answer :

The solution is [tex]21 x^{3}-46 x^{2}+59 x-30[/tex]

Explanation:

The given expression is [tex](7 x-6)\left(3 x^{2}-4 x+5\right)[/tex]

We need to multiply and simplify the expression.

Let us multiply each of term within the parenthesis.

Thus, we get,

[tex]7 x \cdot 3 x^{2}+7 x(-4 x)+7 x \cdot 5+(-6) \cdot 3 x^{2}+(-6)(-4 x)+(-6) \cdot 5[/tex]

Now, simplifying each term in the expression, we have,

[tex]21x^3-28x^2+35x-18x^{2} +24x-30[/tex]

Adding the like terms, we get,

[tex]21 x^{3}-46 x^{2}+59 x-30[/tex]

Hence, the simplified expression is [tex]21 x^{3}-46 x^{2}+59 x-30[/tex]

Therefore, the solution is [tex]21 x^{3}-46 x^{2}+59 x-30[/tex]