Answer :
Answer:
[tex]26.5265<x<29.8735[/tex]
Step-by-step explanation:
Confidence Interval
When the population standard deviation [tex]\sigma[/tex] is known, the formula for a confidence interval for a population mean [tex]\bar x[/tex] is:
[tex]\displaystyle \bar x \pm z\frac{\sigma}{\sqrt{n}}[/tex]
Where n is the sample size and z is the corresponding z-value from the standard normal distribution for the selected confidence level. The value of z for a 95% confidence interval is z=1.96. The rest of the values are
[tex]\bar x=28.2,\ \sigma=2.7, \ n=10[/tex]
Calculating the confidence interval
[tex]\displaystyle 28.2 \pm 1.96\frac{2.7}{\sqrt{10}}[/tex]
[tex]\displaystyle 28.2 \pm 1.6735[/tex]
Or, equivalently
[tex]26.5265<x<29.8735[/tex]