An aqueous solution was prepared at 21 oC by mixing 7.00 mL 2.00 x 10-2mol L-1Fe3+, 2.00 mL 1.50 x 10-3 mol L-1SCN−, and 1.00 mL water. At equilibrium, the concentration of the product complex, [Fe(SCN)2+]eq was determined to be 1.74 x 10-4mol L-1. What is the value of the equilibrium constant K for the reaction of interest at 21 oC?

Answer :

Answer: The value of equilibrium constant for the given reaction is 99.85

Explanation:

To calculate the number of moles for given molarity, we use the equation:

[tex]\text{Molarity of the solution}=\frac{\text{Moles of solute}}{\text{Volume of solution (in L)}}[/tex]    .....(1)

  • For [tex]Fe^{3+}[/tex] ions:

Molarity of [tex]Fe^{3+}[/tex] solution = [tex]2.00\times 10^{-2}M[/tex]

Volume of solution = 7.00 mL = 0.007 L   (Conversion factor: 1 L = 1000 mL)

Putting values in equation 1, we get:

[tex]2.00\times 10^{-2}M=\frac{\text{Moles of }Fe^{3+}\text{ ions}}{0.007L}\\\\\text{Moles of }Fe^{3+}\text{ ions}=(2.00\times 10^{-2}mol/L\times 0.007L)=1.4\times 10^{-4}mol[/tex]

  • For [tex]SCN^{-}[/tex] ions:

Molarity of [tex]SCN^{-}[/tex] solution = [tex]1.50\times 10^{-3}M[/tex]

Volume of solution = 2.00 mL = 0.002 L

Putting values in equation 1, we get:

[tex]1.50\times 10^{-3}M=\frac{\text{Moles of }SCN^{-}\text{ ions}}{0.002L}\\\\\text{Moles of }SCN^-\text{ ions}=(1.50\times 10^{-3}mol/L\times 0.002L)=3\times 10^{-6}mol[/tex]

Volume of the container = [7 + 2 + 1] = 10 mL = 0.010 L

[tex]\text{Molarity of }Fe^{3+}\text{ ions}=\frac{1.4\times 10^{-4}mol}{0.01}=1.4\times 10^{-2}M[/tex]

[tex]\text{Molarity of }SCN^{-}\text{ ions}=\frac{3.0\times 10^{-6}mol}{0.01}=3.0\times 10^{-4}M[/tex]

The chemical equation for the formation of [tex][FeSCN^{2+}][/tex]complex follows:

                                  [tex]Fe^{2+}+SCN^-\rightleftharpoons [FeSCN^{2+}][/tex]

Initial:                     0.014    [tex]3.0\times 10^{-4}[/tex]

At eqllm:             0.014-x   [tex]3.0\times 10^{-4}-x[/tex]     x

We are given:

Equilibrium concentration of [tex][FeSCN^{2+}]=1.74\times 10^{-4}M=x[/tex]

Equilibrium concentration of [tex][Fe^{2+}]\text{ ions}=(1.4\times 10^{-2}-x)=(1.4-0.0174)\times 10^{-3}=1.383\times 10^{-2}M[/tex]

Equilibrium concentration of [tex][SCN^{-}]\text{ ions}=(3.0\times 10^{-4}-x)=(3.0-1.74)\times 10^{-4}=1.26\times 10^{-4}M[/tex]

The expression of [tex]K_{eq}[/tex] for above equation follows:

[tex]K_{eq}=\frac{[FeSCN^{2+}]}{[Fe^{3+}][SCN^-]}[/tex]

Putting values in above equation, we get:

[tex]K_{eq}=\frac{(1.74\times 10^{-4})}{(1.383\times 10^{-2})\times (1.26\times 10^{-4})}\\\\K_{eq}=99.85[/tex]

Hence, the value of equilibrium constant for the given reaction is 99.85

Other Questions