Answer :
Answer:
0.33 atm
Explanation:
Equation for the reaction is expressed as follows:
[tex]NH_4HS_{(s)}[/tex] ⇄ [tex]H_2S_{((g)} + NH _{3(g)}[/tex]
[tex]K_p[/tex] = 0.11
The equilibrium constant for the reaction can be represented as:
[tex]K_p[/tex] = [tex]\frac{P_{H_2S_{((g)}} P_{NH _{3(g)}}}{P_{NH_4HS_{(s)}}}[/tex]
[tex]{P_{NH_4HS_{(s)}}}[/tex] = 1 since it is solid and solid and it is known that any solid has uniformity at equilibrium.
So; [tex]K_p[/tex] = [tex]{P_{H_2S_{((g)}} P_{NH _{3(g)}}}[/tex]
At equilibrium ;
[tex]{P_{H_2S_{((g)}} =P_{NH _{3(g)}}}[/tex]
Let x = [tex]{P_{H_2S_{((g)}} =P_{NH _{3(g)}}}[/tex]
So;
[tex]K_p[/tex] = [tex][x][x][/tex]
[tex]K_p[/tex] = [tex]x^2[/tex]
[tex]x= \sqrt{K_p}[/tex]
[tex]x=\sqrt{0.11}[/tex]
[tex]x = 0.33[/tex] atm
Therefore, the partial pressure of NH3(g) at equilibrium [tex]{P_{H_2S_{((g)}} =P_{NH _{3(g)}}}[/tex] = 0.33 atm