Answer :
Answer:
[tex]W=4037.36\ J[/tex]
Explanation:
Given:
mass of ice melted, [tex]m=3.3\times10^{-2}\ kg[/tex]
time taken by the ice to melt, [tex]t=5\ min=300\ s[/tex]
latent heat of the ice, [tex]L=3.34\times 10^5\ J[/tex]
Now the heat rejected by the Carnot engine:
[tex]Q_R=m.L[/tex]
[tex]Q_R=0.033\times 3.34\times 10^5[/tex]
[tex]Q_R=11022\ J[/tex]
Since we have boiling water as hot reservoir so:
[tex]T_H=373\ K[/tex]
The cold reservoir is ice, so:
[tex]T_L=273\ K[/tex]
Now the efficiency:
[tex]\eta=1-\frac{T_L}{T_H}[/tex]
[tex]\eta=1-\frac{273}{373}[/tex]
[tex]\eta=26.81\%[/tex]
Now form the law of energy conservation:
Heat supplied:
[tex]Q_S-W=Q_R[/tex]
where:
[tex]Q_S=[/tex] heat supplied to the engine
[tex]Q_S-\eta\times Q_S=Q_R[/tex]
[tex]Q_S(1-\eta)=Q_R[/tex]
[tex]Q_S=\frac{11022}{1-0.2681}[/tex]
[tex]Q_S=15059.36\ J[/tex]
Now the work done:
[tex]W=Q_S-Q_R[/tex]
[tex]W=15059.36-11022[/tex]
[tex]W=4037.36\ J[/tex]