Answer :
[tex]V_{x}[/tex] = 0.75 V, [tex]I_{x}[/tex]= 0.56 A
Explanation:
Given data:
[tex]V_{s}[/tex] = 3 V
[tex]R_{s}[/tex] = 1 Ω
[tex]I_{x}[/tex] = [tex]\frac{3V_{X} }{4}[/tex]
Solution:
Using Kirchhoff's voltage law.
The law states that the algebraic addition of potential difference in loop is similar to zero.
[tex]V_{s}[/tex] - [tex]I_{x}[/tex][tex]R_{s}[/tex] - [tex]V_{x}[/tex] = 0
[tex]V_{s}[/tex] - [tex]I_{x}[/tex][tex]R_{s}[/tex] = [tex]V_{x}[/tex]
3 - [tex]\frac{3V_{X} }{4}[/tex] × 1 = [tex]V_{x}[/tex]
12 - 3[tex]V_{x}[/tex] = 4
3 - 3[tex]V_{x}[/tex] =
[tex]V_{x}[/tex] = 3/4
[tex]V_{x}[/tex] = 0.75 V
[tex]I_{x}[/tex] = [tex]\frac{3V_{X} }{4}[/tex]
[tex]I_{x}[/tex] = [tex]\frac{3}{4}[/tex] × 0.75
[tex]I_{x}[/tex] = [tex]\frac{2.25}{4}[/tex]
[tex]I_{x}[/tex] = 0.56 A.