Answer :
Answer:
91383 J
Explanation:
The equation of the reaction can be represented as:
[tex]\frac{1}{2} N_{2(g)}+\frac{1}{2} O_{2(g)}[/tex] ------>[tex]NO_{(g)}[/tex]
Given that:
The standard enthalpy of formation of NO(g) is 91.3 kJ⋅mol−1 at 298.15 K.
The equation below shown the reaction between the enthalpy of reaction at a particular temperature to another.
[tex]\delta H^0__{R,T_2}[/tex] = [tex]\delta H^0__{R,T_1} } + \int\limits^{T_2}_{T_1} {\delta C_p(T')} \, dT'[/tex]
where:
[tex]\delta H^0__{R}[/tex] = enthalpy of reaction
[tex]{\delta C_p(T')}[/tex] = the difference in the heat capacities of the products and the reactants.
∴
[tex]\delta H^0__{R,435K}[/tex] = [tex]\delta H^0__{R,298.15K}[/tex] [tex]+[/tex] [tex]\int\limits^{435}_{298.15} {\delta C_p(T')} \, dT'[/tex]
= [tex]1(91300 J.mol^{-1} ) +\int\limits^{435}_{298.15} [{(29.86)-\frac{1}{2}(29.38)-\frac{1}{2}29.13}]J.K^{-1}.mol^{-1} \, dT'[/tex]
= 91300 J + (0.605 J.K⁻¹)(435-298.15)K
= 91382.79 J
[tex]\delta H^0__{R,435K}[/tex] ≅ 91383 J