Answer :
Answer: The reaction proceeds in the forward direction
Explanation:
For the given chemical equation:
[tex]2NO(g)+Cl_2(g)\rightleftharpoons 2NOCl(g)[/tex]
Relation of [tex]K_p\text{ with }K_c[/tex] is given by the formula:
[tex]K_p=K_c(RT)^{\Delta n_g}[/tex]
where,
[tex]K_p[/tex] = equilibrium constant in terms of partial pressure = ?
[tex]K_c[/tex] = equilibrium constant in terms of concentration = [tex]6.5\times 10^4[/tex]
R = Gas constant = [tex]0.0821\text{ L atm }mol^{-1}K^{-1}[/tex]
T = temperature = [tex]35^oC=[35+273]K=308K[/tex]
[tex]\Delta n_g[/tex] = change in number of moles of gas particles = [tex]n_{products}-n_{reactants}=2-3=-1[/tex]
Putting values in above equation, we get:
[tex]K_p=6.5\times 10^4\times (0.0821\times 500)^{-1}\\\\K_p=1583.43[/tex]
[tex]K_p[/tex] is the constant of a certain reaction at equilibrium while [tex]Q_p[/tex] is the quotient of activities of products and reactants at any stage other than equilibrium of a reaction.
The expression of [tex]Q_p[/tex] for above equation follows:
[tex]Q_p=\frac{(p_{NOCl})^2}{p_{Cl_2}\times (p_{NO})^2}[/tex]
We are given:
[tex]p_{NOCl}=1.76atm[/tex]
[tex]p_{NO}=1.01atm[/tex]
[tex]p_{Cl_2}=0.42atm[/tex]
Putting values in above equation, we get:
[tex]Q_p=\frac{(1.76)^2}{0.42\times (1.01)^2}=7.23[/tex]
We are given:
[tex]K_p=1583.43[/tex]
There are 3 conditions:
- When [tex]K_{p}>Q_p[/tex]; the reaction is product favored.
- When [tex]K_{p}<Q_p[/tex]; the reaction is reactant favored.
- When [tex]K_{p}=Q_p[/tex]; the reaction is in equilibrium
As, [tex]K_p>Q_p[/tex], the reaction will be favoring product side.
Hence, the reaction proceeds in the forward direction