State if the triangles in each pair are similar. If so, State how you know, they are similar and complete the similarity statement.

Answer: (23) ΔTED, AA
(24) ΔARS, SAS
(25) ΔARS, SAS
(26) ΔRBA, AA
Step-by-step explanation:
23) ∠D = ∠V Given
∠T = ∠T Reflexive Property
ΔTUV ~ ΔTED by AA Similarity Theorem
[tex]24)\quad \dfrac{AB}{AR}=\dfrac{AC}{AS}\longrightarrow \dfrac{10}{5}=\dfrac{10}{5}\longrightarrow 50=50\qquad sides\ are\ proportional\\\\.\qquad \angle A=\angle A\\\\[/tex]
ΔABC ~ ΔARS by SAS Similarity Theorem
[tex]25)\quad \dfrac{AC}{AS}=\dfrac{AB}{AR}\longrightarrow \dfrac{91}{78}=\dfrac{56}{48}\longrightarrow 4368=4368\qquad sides\ are\ proportional\\\\.\qquad \angle A=\angle A\\\\[/tex]
ΔABC ~ ΔARS by SAS Similarity Theorem
26) ∠Q = ∠B Given
∠QRP = ∠BRA Vertical Angles
ΔRQP ~ ΔRBA by AA Similarity Theorem