Answer :
Answer:
Step-by-step explanation:
Given
[tex]\int\limits^2_{-2} {(5x^2+4)} \, dx \\\\Here\, f(x)=5x^2+4,[/tex]
a)
Use the trapesoidal rule:
To find the upper bound frind [tex]f"(x)[/tex]:
Here, [tex]f(x)=10x,\,f"(x)=10,\, and |f"(2)|<10[/tex]
So, the upper bound is [tex]K=10[/tex]
[tex]|E_T|=\frac{10(2-(-2))^3}{12n^2}\leq 4\times 10^{-4}=\frac{53.33}{n^2}\leq 0.0005\\\\=326.59\leq n[/tex]
so, n=326.59=327
b)
Use the simpsons rule
[tex]K=f^4(x),\,f^4(x)=0,\, so,\, K=0\\\\|E_s|=\frac{K(b-a)^5}{180n^4}=0[/tex]
so, n = 2