Answer :
Explanation:
Given , Emitted wavelength , \lambda = 2.00 m
Distance between sources , d = 10.0 m
(a) When P is very far , x\rightarrow \infty
Let , The distance from S1 to the point P = d1 = x
The distance from S2 to the point P = d2
The distance d2 can be calculated using pythagoras theorem :
d_{2}^{2}=d^{2}+d_{1}^{2}
d_{2}=\sqrt{d^{2}+d_{1}^{2}}
d_{2}=\sqrt{(10)^{2}+(x)^{2}}
The difference in distance can be calculated as :
d_{2}-d_{1}=\sqrt{(10)^{2}+(x)^{2}}-d_{1}
d_{2}-d_{1}=\sqrt{(10)^{2}+(x)^{2}}-x ................................. equation (1)
Now , As the value of x increases , the difference d2 - d1 approaches zero .
Therefore , When x\rightarrow \infty , the waves are in phase and interfere constructively
Hence , They produce constructive interference
Now , point P is moved along the x axis toward S1
(a) The phase difference is zero at x\rightarrow \infty
Therefore , the phase difference will increase as we move point P toward S1
Hence , the phase difference between the waves will increase
(b) Given , Phase difference \Phi = 0.50 \lambda = 0.50 * 2 = 1 m { wavelength , \lambda = 2.00 m }
\Phi = d_{2}-d_{1}
\Phi =\sqrt{(10)^{2}+(x)^{2}}-x ....................... from equation (1)
1 =\sqrt{(10)^{2}+(x)^{2}}-x
1 + x =\sqrt{(10)^{2}+(x)^{2}}
Squaring both sides , we get :
(1 + x) ^{2}={(10)^{2}+(x)^{2}}
1 + x ^{2}+2x=100+x^{2}
1 +2x=100
2x=100-1
2x=99
x=\frac{99}{2}=49.5 m
Hence , the distance x = 49.5 m
(c) Given , Phase difference \Phi = 1.00 \lambda = 1.00 * 2 = 2 m
\Phi =\sqrt{(10)^{2}+(x)^{2}}-x
2=\sqrt{(10)^{2}+(x)^{2}}-x
2+x=\sqrt{(10)^{2}+(x)^{2}}
Squaring both sides , we get :
(2 + x) ^{2}={(10)^{2}+(x)^{2}}
4 + x ^{2}+4x=100+x^{2}
4 +4x=100
4x=100-4
4x=96
x=\frac{96}{4}= 24 m
Hence , the distance x = 24 m
(d) Given , Phase difference \Phi = 1.50 \lambda = 1.50 * 2 = 3 m
\Phi =\sqrt{(10)^{2}+(x)^{2}}-x
3 =\sqrt{(10)^{2}+(x)^{2}}-x
3 +x=\sqrt{(10)^{2}+(x)^{2}}
Squaring both sides , we get :
(3 + x) ^{2}={(10)^{2}+(x)^{2}}
9 + x ^{2}+6x=100+x^{2}
9+6x=100
6x=100-9
6x=91
x=\frac{91}{6}= 15.2 m
Hence , the distance x = 15.2 m