Answer :

Answer:

[tex]Area\ of\ th\e metal\ frame = 65.5x^{2}\ (unit)^{2}[/tex]

Step-by-step explanation:

Assuming that the metal frame is a square metal frame because the length of the side of the metal frame is given.

Given:

Radius of the mirror = 2x unit

Side length of the square metal frame = 12x unit

We need to find the area of the metal frame.

Solution:

First we find the area of the circular mirror, using area formula of the circle.

[tex]A_{c} = \pi r^{2}[/tex]

Where, r = Radius of the object.

Substitute r = 2x in above equation.

[tex]A_{c} = \pi (5x)^{2}[/tex]

[tex]A_{c} = \pi (25x^{2})[/tex]

[tex]A_{c} = 25\pi x^{2}\ (unit)^{2}[/tex]

Now, we find the area the square, using area formula of the square.

[tex]A_{S} = (Side\ length)^{2}[/tex]

[tex]A_{S} = (12x)^{2}[/tex]

[tex]A_{S} = 144x^{2}\ (unit)^2}[/tex]

So, the area of the square metal frame is given as

[tex]A_{f}=A_{s}-A_{c}[/tex]

[tex]A_{f}=144x^{2}-25\pi x^{2}[/tex]

[tex]A_{f}=(144-25\pi) x^{2}[/tex]

[tex]A_{f}=(144-25\times 3.14) x^{2}[/tex]

[tex]A_{f}=(144-78.5) x^{2}[/tex]

[tex]A_{f}=65.5 x^{2}\ (unit)^{2}[/tex]

Therefore, the area of the metal frame is [tex]65.5x^{2}\ (unit)^{2}[/tex].

Other Questions